Introduction
Maintaining a clean environment is integral to preventing the transfer of pathogens that may cause hospital-acquired infections (HAIs). Patient rooms are cleaned daily and upon patient discharge with the approved hospital disinfectant, a quaternary-based cleaner disinfectant, requiring a ten minute dwell time. Intensive Care Unit (ICU) rooms are cleaned twice daily and upon discharge. Following the transfer of a multiresistant organism (MRID), the efficacy of our environmental services (EVNS) terminal cleaning process was questioned.

Methods
Patient Rooms
Bacterial cultures were taken from twenty-six high-touch surfaces in 3 patient rooms before and after EVS cleaning and after a system calculated UV-C disinfection cycle (Figure 3). Cultures were obtained using the BBL Brand Culture-Swab Collection & Transport System (Becton Dickinson). Cultures were pre-streaked with culture medium from the collection tube, then used to stain the high-touch surfaces. This process occurred twice and after EVS cleaning and after UV-C disinfection was performed in three patient rooms.

Results
A total of 234 cultures were obtained from 3 patient rooms under-going terminal clean and UV-C treatment (Table 2). There was a 37% organism reduction between terminal cleaning and UV-C, and total elimination of pathogens (Figure 4).

In the controlled UV-C only study, a total of 330 cultures were obtained (320 organims incubated and 10 positive controls). The Surfacide® system was allowed to dry for 75 minutes and 95% of the 320 cultures tested positive after UV-C. Treatment time was reduced from a drawer handle which contained an adhesive label. We concluded that the organism was able to attach behind the label, and was protected from the UV-C. This was confirmed as a dressing was used for a patient monitor remote box which was removed for Sunrisec™ sterilization (UV-C). This was negative as a dressing was used and a patient monitor remote box was removed for Sterigsan™ sterilization (VRE). An MRD-Rodtenus anomosus was recovered from a desktop calculator, and Klebsiella pneumoniae (ESBL+) was found in the handle of the medication scanner. No unintended organisms were recovered from any culture (Figure 5).

Conclusions
Culture results from patient rooms after both cleaning and UV-C disinfection demonstrates that UV-C is an effective and integral component in the reduction of bacterial pathogens not eradicated by the cleaning process alone.

Applicability to Practice
UV-C disinfection of the patient room does not guarantee eradication of potential HAI causing organisms. Implementation of touch free disinfection systems, such as the Surfacide® UV-C Helios, provide an additional level of security in reducing the risk of HAIs.

Introduction
Maintaining a clean environment is integral to preventing the transfer of pathogens that may cause hospital-acquired infections (HAIs). Patient rooms are cleaned daily and upon patient discharge with the approved hospital disinfectant, a quaternary-based cleaner disinfectant, requiring a ten minute dwell time. Intensive Care Unit (ICU) rooms are cleaned twice daily and upon discharge. Following the transfer of a multiresistant organism (MRID), the efficacy of our environmental services (EVNS) terminal cleaning process was questioned.

Methods
Patient Rooms
Bacterial cultures were taken from twenty-six high-touch surfaces in 3 patient rooms before and after EVS cleaning and after a system calculated UV-C disinfection cycle (Figure 3). Cultures were obtained using the BBL Brand Culture-Swab Collection & Transport System (Becton Dickinson). Cultures were pre-streaked with culture medium from the collection tube, then used to stain the high-touch surfaces. This process occurred twice and after EVS cleaning and after UV-C disinfection was performed in three patient rooms.

Results
A total of 234 cultures were obtained from 3 patient rooms under-going terminal clean and UV-C treatment (Table 2). There was a 37% organism reduction between terminal cleaning and UV-C, and total elimination of pathogens (Figure 4).

In the controlled UV-C only study, a total of 330 cultures were obtained (320 organims incubated and 10 positive controls). The Surfacide® system was allowed to dry for 75 minutes and 95% of the 320 cultures tested positive after UV-C. Treatment time was reduced from a drawer handle which contained an adhesive label. We concluded that the organism was able to attach behind the label, and was protected from the UV-C. This was confirmed as a dressing was used for a patient monitor remote box which was removed for Sterigsan™ sterilization (UV-C). This was negative as a dressing was used and a patient monitor remote box was removed for Sterigsan™ sterilization (VRE). An MRD-Rodtenus anomosus was recovered from a desktop calculator, and Klebsiella pneumoniae (ESBL+) was found in the handle of the medication scanner. No unintended organisms were recovered from any culture (Figure 5).

Conclusions
Culture results from patient rooms after both cleaning and UV-C disinfection demonstrates that UV-C is an effective and integral component in the reduction of bacterial pathogens not eradicated by the cleaning process alone.

Applicability to Practice
UV-C disinfection of the patient room does not guarantee eradication of potential HAI causing organisms. Implementation of touch free disinfection systems, such as the Surfacide® UV-C Helios, provide an additional level of security in reducing the risk of HAIs.

Introduction
Maintaining a clean environment is integral to preventing the transfer of pathogens that may cause hospital-acquired infections (HAIs). Patient rooms are cleaned daily and upon patient discharge with the approved hospital disinfectant, a quaternary-based cleaner disinfectant, requiring a ten minute dwell time. Intensive Care Unit (ICU) rooms are cleaned twice daily and upon discharge. Following the transfer of a multiresistant organism (MRID), the efficacy of our environmental services (EVNS) terminal cleaning process was questioned.

Methods
Patient Rooms
Bacterial cultures were taken from twenty-six high-touch surfaces in 3 patient rooms before and after EVS cleaning and after a system calculated UV-C disinfection cycle (Figure 3). Cultures were obtained using the BBL Brand Culture-Swab Collection & Transport System (Becton Dickinson). Cultures were pre-streaked with culture medium from the collection tube, then used to stain the high-touch surfaces. This process occurred twice and after EVS cleaning and after UV-C disinfection was performed in three patient rooms.

Results
A total of 234 cultures were obtained from 3 patient rooms under-going terminal clean and UV-C treatment (Table 2). There was a 37% organism reduction between terminal cleaning and UV-C, and total elimination of pathogens (Figure 4).

In the controlled UV-C only study, a total of 330 cultures were obtained (320 organims incubated and 10 positive controls). The Surfacide® system was allowed to dry for 75 minutes and 95% of the 320 cultures tested positive after UV-C. Treatment time was reduced from a drawer handle which contained an adhesive label. We concluded that the organism was able to attach behind the label, and was protected from the UV-C. This was confirmed as a dressing was used for a patient monitor remote box which was removed for Sterigsan™ sterilization (UV-C). This was negative as a dressing was used and a patient monitor remote box was removed for Sterigsan™ sterilization (VRE). An MRD-Rodtenus anomosus was recovered from a desktop calculator, and Klebsiella pneumoniae (ESBL+) was found in the handle of the medication scanner. No unintended organisms were recovered from any culture (Figure 5).

Conclusions
Culture results from patient rooms after both cleaning and UV-C disinfection demonstrates that UV-C is an effective and integral component in the reduction of bacterial pathogens not eradicated by the cleaning process alone.

Applicability to Practice
UV-C disinfection of the patient room does not guarantee eradication of potential HAI causing organisms. Implementation of touch free disinfection systems, such as the Surfacide® UV-C Helios, provide an additional level of security in reducing the risk of HAIs.

Introduction
Maintaining a clean environment is integral to preventing the transfer of pathogens that may cause hospital-acquired infections (HAIs). Patient rooms are cleaned daily and upon patient discharge with the approved hospital disinfectant, a quaternary-based cleaner disinfectant, requiring a ten minute dwell time. Intensive Care Unit (ICU) rooms are cleaned twice daily and upon discharge. Following the transfer of a multiresistant organism (MRID), the efficacy of our environmental services (EVNS) terminal cleaning process was questioned.

Methods
Patient Rooms
Bacterial cultures were taken from twenty-six high-touch surfaces in 3 patient rooms before and after EVS cleaning and after a system calculated UV-C disinfection cycle (Figure 3). Cultures were obtained using the BBL Brand Culture-Swab Collection & Transport System (Becton Dickinson). Cultures were pre-streaked with culture medium from the collection tube, then used to stain the high-touch surfaces. This process occurred twice and after EVS cleaning and after UV-C disinfection was performed in three patient rooms.

Results
A total of 234 cultures were obtained from 3 patient rooms under-going terminal clean and UV-C treatment (Table 2). There was a 37% organism reduction between terminal cleaning and UV-C, and total elimination of pathogens (Figure 4).

In the controlled UV-C only study, a total of 330 cultures were obtained (320 organims incubated and 10 positive controls). The Surfacide® system was allowed to dry for 75 minutes and 95% of the 320 cultures tested positive after UV-C. Treatment time was reduced from a drawer handle which contained an adhesive label. We concluded that the organism was able to attach behind the label, and was protected from the UV-C. This was confirmed as a dressing was used for a patient monitor remote box which was removed for Sterigsan™ sterilization (UV-C). This was negative as a dressing was used and a patient monitor remote box was removed for Sterigsan™ sterilization (VRE). An MRD-Rodtenus anomosus was recovered from a desktop calculator, and Klebsiella pneumoniae (ESBL+) was found in the handle of the medication scanner. No unintended organisms were recovered from any culture (Figure 5).

Conclusions
Culture results from patient rooms after both cleaning and UV-C disinfection demonstrates that UV-C is an effective and integral component in the reduction of bacterial pathogens not eradicated by the cleaning process alone.

Applicability to Practice
UV-C disinfection of the patient room does not guarantee eradication of potential HAI causing organisms. Implementation of touch free disinfection systems, such as the Surfacide® UV-C Helios, provide an additional level of security in reducing the risk of HAIs.